RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2016-19] B.A./B.Sc. FIRST SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016

Date : 10/09/2016 Time : 11 am – 1 pm PHYSICS (Honours) Paper : I

Full Marks : 50

[2]

[3]

[3]

[2]

[4]

[6]

[Use a separate Answer Book for each group]

(Answer <u>five questions</u> taking atleast <u>one</u> from each group)

<u>Group – A</u>

1.	a)	What are the physical significances of gradient?	[2]
	b)	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$.	[4]
	c)	Find the curl of $(\vec{r} f(r))$ where $f(r)$ is differentiable.	[2]
	d)	Prove $\vec{\nabla} \cdot (\phi \vec{A}) = (\vec{\nabla} \phi) \cdot \vec{A} + \phi (\vec{\nabla} \cdot \vec{A})$.	[2]
2.	a)	Define a conservative field.	[2]
	b)	Write integral form of curl.	[1]
	c)	i) Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative field	[2]
		ii) Find the scalar potential.	[2]
		iii) Find the work done in moving an object in this field form $(1,-2, 1)$ to $(3, 2, 4)$.	[1]
	d)	Verify green's theorem for the closed region bounded by the curves $y = x$ and $y = x^2$.	[2]

<u>Group – B</u>

3. a) A particle moves with constant speed v around a circle of radius b. Find its velocity vector in polar coordinates using an origin lying on the circle.

b) The trajectory of a particle is defined by $r = r_0 e^{\beta t}$, $\theta = \omega t$, where r_0, β, ω are constants. Show that for $\beta = \pm \omega$, the radial acceleration is zero, even though the radical velocity is increasing with time. Explain.

- c) Three rail cars each of mass M is pulled with force F by an engine. Use suitable force diagram to find the forces on each car.
- d) In an inertial frames, a projectile is fired with initial speed u in a direction θ w.r.t the x-axis. Let H and R be the maximum height and range in frame S. A frame S' moves with uniform velocity V along to x-axis, relative to S. Find the corresponding values H' and R' in S'.
- 4. a) A particle is projected vertically upwards with an initial speed u in a medium that offers resistance kv^2 per unit mass where v is the instantaneous speed. Set up the equation of motion and find the maximum height reached.
 - b) Set up the differential equation of motion of a body of variable mass, moving in an applied force field \vec{F} , using the impulse momentum theorem. Hence, obtain the equation of motion of a rocket. Explain the physical significance of each term.

<u>Group – C</u>

5. a) Show that if A and B are matrices which don't commute, then $e^{A+B} \neq e^{A}e^{B}$, but if they commute then the relation holds. [4]

b) Find the eigenvalues and eigenvectors of the matrix $H = \begin{pmatrix} -2 & 3+4i \\ 3-4i & -2 \end{pmatrix}$. Write a unitary matrix

U which diagonalize H by a similarity transformation, and show that $U^{-1}HU$ is the diagonal matrix of eigenvalues.

[6]

- Solve the non-homogeneous differential equation : $\frac{d^2y}{dx^2} + 4y = x^2 \sin 2x$. a) [4] 6.
 - b) Solve the system of equations :

$$\frac{dx}{dt} + 2x - 3y = t \ ; \ \frac{dy}{dt} - 3x + 2y = e^{2t} \ .$$
[6]

Group – D

- Determine the system matrix for a convex spherical surface separating two media and deduce 7. a) the relation $\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ where the symbols have their usual meaning. [5] [3]
 - b) Using Fermat's principle deduce the law of reflection for a concave spherical surface.
 - Show that for an elliptic mirror the two foci are the two aplanatic points. c) [2]
- Find the cardinal points of two thin lenses separated by a distance in air. [4] 8. a)
 - Show that for a planoconvex or a planoconcave lens one of the principal points will always lie b) on the curved surface. [3]

c) Find the cardinal points of a waterdrop having
$$n = \frac{4}{3}$$
 and radius 1 mm when placed in air. [3]

____ × __